Methadone is a local anaesthetic-like inhibitor of neuronal Na+ channels and blocks excitability of mouse peripheral nerves.

نویسندگان

  • C Stoetzer
  • K Kistner
  • T Stüber
  • M Wirths
  • V Schulze
  • T Doll
  • N Foadi
  • F Wegner
  • J Ahrens
  • A Leffler
چکیده

BACKGROUND Opioids enhance and prolong analgesia when applied as adjuvants to local anaesthetics (LAs). A possible molecular mechanism for this property is a direct inhibition of voltage-gated Na(+) channels which was reported for some opioids. Methadone is an effective adjuvant to LA and was recently reported to inhibit cardiac Na(+) channels. Here, we explore and compare LA properties of methadone and bupivacaine on neuronal Na(+) channels, excitability of peripheral nerves, and cell viability. METHODS Effects of methadone were explored on compound action potentials (CAP) of isolated mouse saphenous nerves. Patch clamp recordings were performed on Na(+) channels in ND7/23 cells, the α-subunits Nav1.2, Nav1.3, Nav1.7, and Nav1.8, and the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2). Cytotoxicity was determined using flow cytometry. RESULTS Methadone (IC50 86-119 µM) is a state-dependent and unselective blocker on Nav1.2, Nav1.3, Nav1.7, and Nav1.8 with a potency comparable with that of bupivacaine (IC50 177 µM). Both bupivacaine and methadone also inhibit C- and A-fibre CAPs in saphenous nerves in a concentration-dependent manner. Tonic block of Nav1.7 revealed a discrete stereo-selectivity with a higher potency for levomethadone than for dextromethadone. Methadone is also a weak blocker of HCN2 channels. Both methadone and bupivacaine induce a pronounced cytotoxicity at concentrations required for LA effects. CONCLUSIONS Methadone induces typical LA effects by inhibiting Na(+) channels with a potency similar to that of bupivacaine. This hitherto unknown property of methadone might contribute to its high efficacy when applied as an adjuvant to LA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

P 46: The Role of Kv7-Channels in the Pathophysiology of Multiple Sclerosis

Multiple sclerosis is an autoimmune CNS-disease characterized by inflammatory neurodegenerative events occurring with de- and remyelination. Recent evidence show that demyelinated neurons are less excitable than myelinated ones while at early stages of remyelination these neurons seem to be hyperexcitable. The latter is a transitory condition that, very likely, leads to impaired neuronal networ...

متن کامل

Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels.

Local anaesthetics have been used clinically for well over a century, but the molecular mechanisms by which they alter speci®c functions of the peripheral nerve system remained unclear for a long time. Investigations during the last few decades presented evidence implicating the sodium (Na) channel protein as a target for speci®c, clinically important, local anaesthetic effects on mammalian neu...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

The modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)

Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of anaesthesia

دوره 114 1  شماره 

صفحات  -

تاریخ انتشار 2015